Indian Statistical Institute First Semester Examination 2005-2006 B.Math. (Hons.) III Year Complex Analysis Date: 22-11-2005

Total Marks: 60

Time: 3 hrs

Answer as many questions as you can. The maximum you can score is 55. All questions carry equal marks. You may use your class-room notes in the exam. However you cannot use textbooks.

- 1. f_n holomorphic on $\Omega = \{z : |z| < 1\}, f_n(0) = 0$ and $f'_n \to g$ uniformly on compact subsets of Ω . Show that there exists f, holomorphic on Ω , such that $f_n \to f$ uniformly. How are f and g related ?
- 2. f is nonconstant and holomorphic on $\Omega = \{z : |Im z| < 1\}$ and continuous on $\overline{\Omega} = \{z : |Im z| \le 1\}$. Also |f(z)| < |f(Im z)| for $z \in \overline{\Omega}$. Prove that f is bounded on $\overline{\Omega}$. Identify the points of $\overline{\Omega}$ on which |f|may have a maximum.
- 3. Let $f_N(z) = \sum_{n=1}^{N} \frac{n^2 z^{n-1}}{n^2 + z^2}$. Prove that f_n converges to a holomorphic function in $\Omega = \{z : |z| < 1\}$. If γ is a circle of radius 0 < r < 1, centred at 0, what is $\int_{\gamma} \frac{f(z)}{z} dz$?
- 4. f is an entire function such that $\frac{f(z)z^3}{1+z^2}$ is bounded on $\mathbb{C}\setminus\{-i,i\}$. What conclusions can you draw about f?
- 5. Evaluate $\int_{-\infty}^{\infty} \frac{t^2}{1+t^4} dt$ using contour integration.
- 6. (a) Let $w = \frac{z-i}{z+i}$ be the conformal map of the open upper half plane IH onto the open unit disc $I\!\!D$. Show that the pull back of the Poincare metric λ of the unit disc $I\!\!D$ under w is $2\frac{|dz|}{|y|}$, where $z = x + iy \in I\!H$.

(b) Let f be a holomorphic function on $\{0 < |z| < r\}$ omitting the two values 0 and 1 from its range. Let φ be a metric on $\mathbb{C}\setminus\{0,1\}$ whose Gaussian curvature is at most -4. Show that the length of $f(C_{\epsilon})$, computed with respect to the metric φ , goes to zero as $\epsilon \to 0$, where C_{ϵ} is the circle of radius ϵ centered at 0.

(Hint: Assume r = 1 and consider $g(w) = f(e^{iw})$, where w is as in part (a).)